406 MATHEMATICS

EXERCISE 9.5

In each of the Exercises 1 to 10, show that the given differential equation is homogeneous and solve each of them.

1.
$$(x^{2} + xy) dy = (x^{2} + y^{2}) dx$$

3. $(x - y) dy - (x + y) dx = 0$
5. $x^{2} \frac{dy}{dx} = x^{2} - 2y^{2} + xy$
7. $\left\{x \cos\left(\frac{y}{x}\right) + y \sin\left(\frac{y}{x}\right)\right\} y dx = \left\{y \sin\left(\frac{y}{x}\right) - x \cos\left(\frac{y}{x}\right)\right\} x dy$
8. $x \frac{dy}{dx} - y + x \sin\left(\frac{y}{x}\right) = 0$
9. $y dx + x \log\left(\frac{y}{x}\right) dy - 2x dy = 0$
10. $1 e^{\frac{x}{y}} dx e^{\frac{x}{y}} 1 \frac{x}{y} dy 0$

For each of the differential equations in Exercises from 11 to 15, find the particular solution satisfying the given condition:

11.
$$(x + y) dy + (x - y) dx = 0; y = 1$$
 when $x = 1$
12. $x^2 dy + (xy + y^2) dx = 0; y = 1$ when $x = 1$

13.
$$x\sin^2 \frac{y}{x} + y \, dx + x \, dy = 0; \ y = \frac{1}{4}$$
 when $x = 1$

14.
$$\frac{dy}{dx} - \frac{y}{x} + \csc\left(\frac{y}{x}\right) = 0; y = 0 \text{ when } x = 1$$

15.
$$2xy + y^2 - 2x^2 \frac{dy}{dx} = 0$$
; $y = 2$ when $x = 1$

16. A homogeneous differential equation of the from $\frac{dx}{dy} = h\left(\frac{x}{y}\right)$ can be solved by making the substitution.

(A) y = vx (B) v = yx (C) x = vy (D) x = v

17. Which of the following is a homogeneous differential equation?

- (A) (4x + 6y + 5) dy (3y + 2x + 4) dx = 0
- (B) $(xy) dx (x^3 + y^3) dy = 0$
- (C) $(x^3 + 2y^2) dx + 2xy dy = 0$
- (D) $y^2 dx + (x^2 xy y^2) dy = 0$

9.5.3 Linear differential equations

A differential equation of the from

$$\frac{dy}{dx} + \mathbf{P}y = \mathbf{Q}$$

where, P and Q are constants or functions of *x* only, is known as a first order linear differential equation. Some examples of the first order linear differential equation are

$$\frac{dy}{dx} + y = \sin x$$
$$\frac{dy}{dx} + \left(\frac{1}{x}\right)y = e^x$$
$$\frac{dy}{dx} + \left(\frac{y}{x\log x}\right) = \frac{1}{x}$$

Another form of first order linear differential equation is

$$\frac{dx}{dy} + \mathbf{P}_1 x = \mathbf{Q}$$

where, P_1 and Q_1 are constants or functions of y only. Some examples of this type of differential equation are

$$\frac{dx}{dy} + x = \cos y$$
$$\frac{dx}{dy} + \frac{-2x}{y} = y^2 e^{-y}$$

To solve the first order linear differential equation of the type

$$\frac{dy}{dx} \quad \mathbf{P}y = \mathbf{Q} \qquad \qquad \dots (1)$$

Multiply both sides of the equation by a function of $x \operatorname{say} g(x)$ to get

$$g(x) \frac{dy}{dx} + P.(g(x)) y = Q.g(x)$$
 ... (2)